拋物線的焦點(diǎn)F恰好是雙曲線的右焦點(diǎn),且它們的交點(diǎn)的連線過點(diǎn)F,則雙曲線的離心率為 ( )

A. B. C. 3 D.

 

A

【解析】

試題分析:因?yàn)閽佄锞的焦點(diǎn)為.所以.由于雙曲線與拋物線的對(duì)稱性可知,要使兩交點(diǎn)的連線過.只有一種情況該直線垂直于x.因此可得拋物線過點(diǎn)代入拋物線的方程可得離心率為.故選A.

考點(diǎn):1.雙曲線的性質(zhì).2.拋物線的性質(zhì).3.圓錐圖形的對(duì)稱性.4.離心率的概念.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆浙江省臺(tái)州市高二第一學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).設(shè)方程有實(shí)數(shù)根;函數(shù)在區(qū)間上是增函數(shù).有且只有一個(gè)正確,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:解答題

已知曲線C上的動(dòng)點(diǎn)P)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B1,0距離之比為

(1)求曲線C的方程。

(2)過點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)MN,若|MN|=4,求直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:選擇題

已知橢圓上一點(diǎn)到右焦點(diǎn)的距離是1,則點(diǎn)到左焦點(diǎn)的距離是( )

A. B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“不等式對(duì)任意恒成立”,命題:“方程表示焦點(diǎn)在x軸上的橢圓”,若為真命題,為真,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)變量滿足則目標(biāo)函數(shù)的最小值為( )

A. 2 B. 4 C. 6 D. 以上均不對(duì)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象在點(diǎn)(e為自然對(duì)數(shù)的底數(shù))處取得極值-1.

1)求實(shí)數(shù)的值;

2)若不等式對(duì)任意恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

不等式的解集為( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南許昌市五高二上期期末聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)變量滿足約束條件則目標(biāo)函數(shù)的最大值為(   )

A14 B11 C12 D10

 

查看答案和解析>>

同步練習(xí)冊(cè)答案