分析 (1)由Sn與an的關(guān)系,我們從n=1依次代入整數(shù)值,即可求出a1,a2,a3;
(2)由a1,a2,a3的值與n的關(guān)系,我們歸納推理出數(shù)列的通項(xiàng)公式,觀察到它們是與自然數(shù)集相關(guān)的性質(zhì),故可采用數(shù)學(xué)歸納法來(lái)證明.
解答 解。1)a1=1,a2=$\sqrt{2}$-1,a3=$\sqrt{3}$-$\sqrt{2}$.
(2)猜想an=$\sqrt{n}$-$\sqrt{n-1}$.
證明:①當(dāng)n=1時(shí),由a1=$\sqrt{1}$=1得結(jié)論成立;
②假設(shè)n=k(k∈N*)時(shí)結(jié)論成立,
即ak=$\sqrt{k}$-$\sqrt{k-1}$.
當(dāng)n=k+1時(shí),
ak+1=Sk+1-Sk=$\frac{1}{2}$(ak+1+$\frac{1}{ak+1}$)-$\frac{1}{2}$(ak+$\frac{1}{ak}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{ak+1}$)-$\frac{1}{2}$($\sqrt{k}$-$\sqrt{k-1}$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$),
從而有ak+12+2$\sqrt{k}$ak+1-1=0,
又由ak+1>0,
解得ak+1=$\frac{-2\sqrt{k}+\sqrt{4k+4}}{2}$=$\sqrt{k+1}$-$\sqrt{k}$,
這說(shuō)明當(dāng)n=k+1時(shí)結(jié)論成立.
由①②可知,an=$\sqrt{n}$-$\sqrt{n-1}$對(duì)任意正整數(shù)n都成立.
點(diǎn)評(píng) 本題(2)中的證明要用到數(shù)學(xué)歸納法,數(shù)學(xué)歸納法常常用來(lái)證明一個(gè)與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時(shí)成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對(duì)一切自然數(shù)n都成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過(guò)定點(diǎn)(-1,1) | |
B. | 函數(shù)$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函數(shù) | |
C. | 函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù) | |
D. | 函數(shù)f(x)=x2+4x+2在(0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3i | B. | 2i | C. | i | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 3 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,\sqrt{6}]$ | B. | (-∞,2] | C. | $[{\sqrt{6},+∞})$ | D. | [0,$\sqrt{6}$] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com