在△ABC中,a,b,c分別是角A,B,C的對邊,若tanA=3,cosC=
5
5

(1)求角B的大小;
(2)若c=4,求△ABC面積
分析:(1)根據(jù)cosC可求得sinC和tanC,根據(jù)tanB=-tan(A+C),可求得tanB,進(jìn)而求得B.
(2)先由正弦定理可求得b,根據(jù)sinA=sin(B+C)求得sinA,進(jìn)而根據(jù)三角形的面積公式求得面積.
解答:解:(1)∵cosC=
5
5

∴sinC=
2
5
5
,tanC=2
∵tanB=-tan(A+C)=-
tanA+tanC
1-tanAtanC
=1
又0<B<π
∴B=
π
4

(2)由正弦定理
b
sinB
=
c
sinC
可得b=
c
sinC
sinB
=
10
,
由sinA=sin(B+C)=sin(
π
4
+C)得,sinA=
3
10
10

∴△ABC面積為:
1
2
bcsinA=6
點(diǎn)評:本題主要考查了正弦定理和三角形面積公式的實(shí)際應(yīng)用.正弦定理和余弦定理及三角形的面積公式都是解三角形的常用公式,需要重點(diǎn)記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2

③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案