已知關(guān)于x的一元二次方程x2+2ax+b2=0,
(1)若a是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,2]中任取的一個(gè)數(shù),b是從區(qū)間[0,3]中任取的一個(gè)數(shù),求上述方程無(wú)實(shí)根的概率.
解:(1)設(shè)事件A為“方程x2+2ax+b2=0有實(shí)根”,
當(dāng)a≥0,b≥0時(shí),方程x2+2ax+b2=0有實(shí)根等價(jià)于a≥b,
基本事件共有12個(gè):(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),
其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值,
事件A包含6個(gè)基本事件,
所以事件A發(fā)生的概率為。
(2)設(shè)事件B為“方程x2+2ax+b2=0無(wú)實(shí)根”,
當(dāng)a≥0,b≥0時(shí),方程x2+2ax+b2=0無(wú)實(shí)根等價(jià)于a<b,
由題知:試驗(yàn)全部結(jié)果所構(gòu)成的區(qū)域?yàn)閧(a,b)| 0≤a≤2,0≤b≤3},
故構(gòu)成事件B的區(qū)域?yàn)閧(a,b)|0≤a≤2,0≤b≤3,a<b}(如下圖陰影部分),

故所求事件B的概率為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(
1
2
,|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關(guān)于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•藍(lán)山縣模擬)已知關(guān)于x的一元二次不等式ax2+bx+c≥0在實(shí)數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案