如圖4,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,的中點(diǎn),交于點(diǎn),將沿折起,得到如圖5所示的三棱錐,其中

(1) 證明://平面;

(2) 證明:平面;

(3) 當(dāng)時(shí),求三棱錐的體積

【解析】(1)在等邊三角形中,

,在折疊后的三棱錐

也成立, ,平面,

平面,平面;

(2)在等邊三角形中,的中點(diǎn),所以①,.

 在三棱錐中,

;

(3)由(1)可知,結(jié)合(2)可得.

【解析】這個(gè)題是入門(mén)級(jí)的題,除了立體幾何的內(nèi)容,還考查了平行線分線段成比例這個(gè)平面幾何的內(nèi)容.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(如圖1)在邊長(zhǎng)為4的正方形ABCD中,E、F分別是邊AB,BC上的點(diǎn),且AE=BF=1,過(guò)線段EF上的點(diǎn)P分別作DC,AD的垂線,垂足為M,N,延長(zhǎng)NP交BC于Q,試寫(xiě)出矩形PMDN的面積y與FQ的長(zhǎng)x之間的函數(shù)關(guān)系,并求出y的最大值.
(2)(如圖2)在邊長(zhǎng)為4的正方形ABCD中,E、F分別是邊AB,BC上的點(diǎn),且AE=BF=x,設(shè)多邊形的面積為y,當(dāng)x為何值時(shí),多邊形AEFCD的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線l為折痕,正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為B′;折痕l與AB交于點(diǎn)E,點(diǎn)M滿足關(guān)系式
EM
=
EB
+
EB′

(1)如圖,建立以AB中點(diǎn)為原點(diǎn)的直角坐標(biāo)系,求點(diǎn)M的軌跡方程;
(2)若曲線C是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,
F是AB邊上的一點(diǎn),
BA
BF
=4,過(guò)點(diǎn)F的直線交曲線C于P、Q兩點(diǎn),且
PF
FQ
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)如圖,在邊長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E為AD中點(diǎn),
(1)求二面角E-A1C1-D1的平面角的余弦值;
(2)求四面體B-A1C1E的體積.
(3)(文) 求E點(diǎn)到平面A1C1B的距離
(4)(文)求二面角B-A1C1-B1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

如圖,在邊長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E為AD中點(diǎn),
(1)求二面角E-A1C1-D1的平面角的余弦值;
(2)求四面體B-A1C1E的體積.
(3)(文) 求E點(diǎn)到平面A1C1B的距離
(4)(文)求二面角B-A1C1-B1的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案