已知函數(shù)f(x)=3sin(
x
2
+
π
6
)+3

(1)用五點(diǎn)畫圖法畫出它在一個(gè)周期內(nèi)的圖象;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
精英家教網(wǎng)
分析:(1)令
x
2
+
π
6
分別等于0,
π
2
,π,
2
,2π,求得五個(gè)對應(yīng)的(x,y)值,在坐標(biāo)系中描出這5個(gè)點(diǎn),用平滑曲線連接,即得它在一個(gè)周期內(nèi)的圖象.
(2)根據(jù)2kπ-
π
2
x
2
+
π
6
≤2kπ+
π
2
,k∈z
,得到x的范圍,即得函數(shù)的單調(diào)增區(qū)間.
解答:解:(1)列表:
x
2
+
π
6
0
π
2
π
2
x -
π
3
3
3
3
11π
3
y=3sin(2x+)+3 3 6 3 0 3
作出圖象:
精英家教網(wǎng)
(2)由2kπ-
π
2
x
2
+
π
6
≤2kπ+
π
2
,k∈z
4kπ-
3
≤x≤4kπ+
3
,k∈z

∴函數(shù)f(x)的單調(diào)遞增區(qū)間是[4kπ-
3
,4kπ+
3
],k∈z
點(diǎn)評(píng):本題考查用五點(diǎn)法做出y=Asin(ωx+∅)的圖象,以及它的單調(diào)區(qū)間,用五點(diǎn)法做出y=Asin(ωx+∅)的圖象,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于( 。

查看答案和解析>>

同步練習(xí)冊答案