分析 (1)利用余弦定理,可得AB2=OA2+OB2-2OA•OBcos∠AOB,即可求旗桿的高度h;
(2)計(jì)算tan(β-α),利用基本不等式,結(jié)合正切函數(shù)的單調(diào)性,即可得到結(jié)論.
解答 解:(1)在Rt△POA中,OA=$\sqrt{3}$h,在Rt△POB中,OB=h,
在Rt△AOB中,d2=($\sqrt{3}$h)2+h2-2•$\sqrt{3}$h•hcos30°,其中:d=40,得:h=40,
故旗桿的高度為40.
(2)∵tanα=$\frac{h}{d+\frac{dh}{4}}$,tanβ=$\frac{4}j0f5i5f$,
∴tan(β-α)=$\frac{\frac{4}vcdbpne-\frac{4h}{d(h+4)}}{1+\frac{16h}{zvw1rzf^{2}(h+4)}}$=$\frac{16d}{k7bh9ns^{2}(h+4)+16h}$=$\frac{16}{d(h+4)+\frac{16h}gpi6tzt}$≤$\frac{16}{2\sqrt{16h(h+4)}}$=$\frac{2}{\sqrt{h(h+4)}}$=$\frac{2\sqrt{21}}{105}$,
當(dāng)且僅當(dāng)d(h+4)=$\frac{16h}al44jn9$即d=$\frac{4\sqrt{21}}{5}$時(shí)“=”成立,
故當(dāng)d=$\frac{4\sqrt{21}}{5}$時(shí),tan(β-α)最大,
∵0<α<β<$\frac{π}{2}$,∴0<β-α<$\frac{π}{2}$,
∴當(dāng)d=$\frac{4\sqrt{21}}{5}$時(shí),β-α最大.
點(diǎn)評(píng) 本題考查余弦定理的運(yùn)用,考查差角的正切公式,考查正切函數(shù)的單調(diào)性,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com