已知某二次函數(shù)f(x)圖象過原點(diǎn),且經(jīng)過(-1,-5)和(2,4)兩點(diǎn),
(Ⅰ)試求f(x)函數(shù)的解析式;
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進(jìn)行證明.
(Ⅰ)因?yàn)閒(x)過原點(diǎn),設(shè)f(x)=ax2+bx,
由題意,圖象經(jīng)過(-1,-5)和(2,4)兩點(diǎn)∴
a-b=-5
4a+2b=4

解得:
a=-1
b=4
f(x)=-x2+4x
(Ⅱ)函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
證明:任取x1<x2∈[3,7]f(x1)-f(x2)=(-x12+4x1)-(-x22+4x2)=(x22-x12)+(4x1-4x2)=(x2+x1)(x2-x1)+4(x1-x2)=(x2-x1)(x2+x1-4)x1<x2∈[3,7],x2+x1>6,x2-x1>0∴(x2+x1-4)>0∴f(x1)-f(x2)=(x2-x1)(x2+x1-4)>0∴f(x1)>f(x2),而x1<x2∈[3,7]∴函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某二次函數(shù)f(x)圖象過原點(diǎn),且經(jīng)過(-1,-5)和(2,4)兩點(diǎn),
(Ⅰ)試求f(x)函數(shù)的解析式;
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某二次函數(shù)f(x)圖象過原點(diǎn),且經(jīng)過(-1,-5)和(2,4)兩點(diǎn),
(Ⅰ)試求f(x)函數(shù)的解析式;
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省青島市平度一中高一(上)自主測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

已知某二次函數(shù)f(x)圖象過原點(diǎn),且經(jīng)過(-1,-5)和(2,4)兩點(diǎn),
(Ⅰ)試求f(x)函數(shù)的解析式;
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知一個(gè)二次函數(shù)的對(duì)稱軸為x=2,它的圖象經(jīng)過點(diǎn)(2,3),且與某一次函數(shù)的圖象交于點(diǎn)(0,-1),那么已知的二次函數(shù)的解析式是


  1. A.
    f(x)=-x2-4x-1
  2. B.
    f(x)=-x2+4x+1
  3. C.
    f(x)=-x2+4x-1
  4. D.
    f(x)=x2-4x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案