對于二項式(
1
x
+x3)n
的展開式(n∈N*),四位同學(xué)作出了四種判斷:
①存在n∈N*,展開式中有常數(shù)項;
②對任意n∈N*,展開式中沒有常數(shù)項;
③對任意n∈N*,展開式中沒有x的一次項;
④存在n∈N*,展開式中有x的一次項.
上述判斷中正確的是(  )
A、①與③B、②與③
C、①與④D、②與④
分析:利用二項展開式的通項公式求出展開式的通項,令x的指數(shù)為0,1得到n滿足的條件,得到選項.
解答:解:(
1
x
+x3)
n
展開式的通項為Tr+1=Cnrx4r-n(其中r=0,1,2,…n)
令4r-n=0得r=
n
4

故當n是4的倍數(shù)時,展開式存在常數(shù)項
故①對②不對
令4r-n=1得r=
n+1
4

故當n+1是4的整數(shù)倍時,展開式中有x的一次項,
故③不對④對
故選C
點評:本題考查利用二項展開式的通項公式,解決二項展開式的特定項問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)對于二項式(
1x
+x3
n(n∈N*),4位同學(xué)作出了4種判斷:①存在n∈N*,使展開式中沒有常數(shù)項;②對任意n∈N*,展開式中沒有常數(shù)項;③對任意n∈N*,展開式中沒有x的一次項;④存在n∈N*,使展開式中有x的一次項.上述判斷中正確的是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京 題型:單選題

對于二項式(
1
x
+x3)n
的展開式(n∈N*),四位同學(xué)作出了四種判斷:
①存在n∈N*,展開式中有常數(shù)項;
②對任意n∈N*,展開式中沒有常數(shù)項;
③對任意n∈N*,展開式中沒有x的一次項;
④存在n∈N*,展開式中有x的一次項.
上述判斷中正確的是( 。
A.①與③B.②與③C.①與④D.②與④

查看答案和解析>>

同步練習(xí)冊答案