把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;  
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g2(x)的單調(diào)增區(qū)間.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)首先,結合平移,得到g(x)=2sin(2x+
π
3
+φ)
,然后,根據(jù)g(x)為偶函數(shù),求解;
(Ⅱ)化簡函數(shù)解析式,然后,求解單調(diào)增區(qū)間即可.
解答: 解:(1)
π
6
圖象向左平移
π
6
得到f(x+
π
6
)=2sin(2x+
π
3
+φ)
,
g(x)=2sin(2x+
π
3
+φ)

∵g(x)為偶函數(shù),
因此
π
3
+φ=kπ+
π
2

又0<φ<π,
φ=
π
6

(2)∴g(x)=2cos2x代入得,
h(x)=2sin2x-2cos2x-2=2
2
sin(2x-
π
4
)-2

因此單調(diào)遞增區(qū)間是[kπ-
π
8
,kπ+
8
],k∈z
點評:本題重點考查了三角函數(shù)圖象與性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)t-1的定義域為(-1,+∞),其中實數(shù)t滿足t≠0且t≠1.直線l:y=g(x)是f(x)的圖象在x=0處的切線.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,試確定t的取值范圍;
(3)若0<a1≤a2≤a3<1,求證:a1a1+a2a2+a3a3≥a1a2+a2a3+a3a1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是邊長為2的正方形,△ABE為等腰三角形,AE=BE=
2
,平面ABCD⊥平面ABE,
(Ⅰ)求證:平面ADE⊥平面BCE;
(Ⅱ)求三棱錐D-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(I)求cos2A的值;
(Ⅱ)求證:tanA=2tanB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
2

(1)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的零點的集合.
(2)在給定的坐標系內(nèi),用五點作圖法畫出函數(shù)f(x)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明函數(shù)y=x3+1在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設計一個求
1
1+22
+
1
2+32
+
1
3+42
1
99+1002
的值的程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x-1|+ax.
(Ⅰ)當a=2時,解關于x的不等式f(x)≥|x-2|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是首項為1的正數(shù)項數(shù)列,且(n+1)an+12-nan2+an+1an=0(n∈N*),經(jīng)歸納猜想可得這個數(shù)列的通項公式為
 

查看答案和解析>>

同步練習冊答案