<var id="qdcox"><form id="qdcox"></form></var>
設數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,,其中m≠0,
(1)當m=1時,求bn;
(2)設Sn為數(shù)列{an}的前n項和,若對于任意的正整數(shù)n,都有Sn∈[1,3],求實數(shù)m的取值范圍。
解:(1)由已知,所以;

所以,解得; 
所以數(shù)列{an}的公比;
當m=1時,
,………………………①,
,……………………②,
②-①得,
所以
;
(2),
因為
所以由,
注意到,當n為奇數(shù)時,
當n為偶數(shù)時,,
所以最大值為,最小值為
對于任意的正整數(shù)n都有,
所以,解得
即所求實數(shù)m的取值范圍是。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第6章 數(shù)列):6.3 等差數(shù)列、等比數(shù)列(二)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

同步練習冊答案