2.若冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)A($\frac{1}{4}$,$\frac{1}{2}$),則曲線y=f(x)在A點(diǎn)處的切線方程是4x-4y+1=0.

分析 利用待定系數(shù)法求出函數(shù)f(x)的解析式,然后求函數(shù)導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.

解答 解:設(shè)冪函數(shù)f(x)=xα,
∵冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)A($\frac{1}{4}$,$\frac{1}{2}$),
∴f($\frac{1}{4}$)=($\frac{1}{4}$)α=$\frac{1}{2}$,即($\frac{1}{2}$)=$\frac{1}{2}$,
則2α=1,則α=$\frac{1}{2}$,即f(x)=${x}^{\frac{1}{2}}$,
則f′(x)=$\frac{1}{2}$$•\frac{1}{\sqrt{x}}$,
則f′($\frac{1}{4}$)=$\frac{1}{2}•\frac{1}{\sqrt{\frac{1}{4}}}=\frac{1}{2}×2=1$,
則曲線y=f(x)在A點(diǎn)處的切線方程y-$\frac{1}{2}$=x-$\frac{1}{4}$,
即4x-4y+1=0,
故答案為:4x-4y+1=0

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,以及函數(shù)切線的求解,利用導(dǎo)數(shù)的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\bar w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與$y=c+d\sqrt{x}$,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);
(Ⅱ)根據(jù)( I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問(wèn)題:
(i)當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\bar v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\hat α=\overline v-\hat β\overline u$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ln(x+1)-ax,g(x)=1-ex.(a為常數(shù),其中e是自然對(duì)數(shù)的底數(shù))
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥0時(shí),函數(shù)f(x)的圖象恒在g(x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.為了研究性格與血型的關(guān)系,抽取80名被試者,他們的血型與性格匯總?cè)绫,試判斷性格與血型是否相關(guān).
血型性格O型或A型B型或AB型總計(jì)
A型181634
B型172946
總計(jì)354580

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a,b∈R,a>b,則下列結(jié)論正確的是( 。
A.a2>b2B.${a^{\frac{1}{2}}}$>${b^{\frac{1}{2}}}$C.a-3<b-3D.${a^{\frac{1}{3}}}$>${b^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若隨機(jī)變量η的分布列如表:
η012345
P0.10.20.20.30.10.1
則當(dāng)P(η<x)=0.8時(shí),實(shí)數(shù)x的取值范圍是( 。
A.x≤4B.3<x<4C.3≤x≤4D.3<x≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx-a(x-1)(a∈R),g(x)=ex
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0時(shí),h(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知(x+$\frac{1}{\root{3}{x}}$)n的展開式中沒(méi)有常數(shù)項(xiàng),則n不能是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知圓P:x2+y2=5,則經(jīng)過(guò)點(diǎn)M(-1,2)且與圓P相切的直線方程是x-2y+5=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案