如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分別是
CC1、BC的中點,點P在A1B1上,且滿足(λ∈R).
(1)證明:PN⊥AM;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該最大角的正切值;
(3)若平面PMN與平面ABC所成的二面角為45°,試確定點P的位置.

【答案】分析:(1)以AB,AC,AA1分別為x,y,z軸,建立空間直角坐標系A-xyz,求出各點的坐標及對應向量的坐標,易判斷=0,即PN⊥AM;
(2)設出平面ABC的一個法向量,我們易表達出sinθ,然后利用正弦函數(shù)的單調性及正切函數(shù)的單調性的關系,求出滿足條件的λ值,進而求出此時θ的正線值;
(3)平面PMN與平面ABC所成的二面角為45°,則平面PMN與平面ABC法向量的夾角為45°,代入向量夾角公式,可以構造一個關于λ的方程,解方程即可求出對應λ值,進而確定出滿足條件的點P的位置.
解答:解:(1)證明:如圖,以AB,AC,AA1分別為x,y,z軸,建立空間直角坐標系A-xyz.
則P(λ,0,1),N(,,0),M(0,1,),(2分)
從而=(-λ,,-1),=(0,1,),
=(-λ)×0+×1-1×=0,
所以PN⊥AM.(3分)
(2)平面ABC的一個法向量為=(0,0,1),
則sinθ=|sin(-<>)|=|cos<,>|
=||=(※).(5分)
而θ∈[0,],當θ最大時,sinθ最大,tanθ最大,θ=除外,
由(※)式,當λ=時,(sinθ)max=,(tanθ)max=2.(6分)
(3)平面ABC的一個法向量為==(0,0,1).
設平面PMN的一個法向量為=(x,y,z),
由(1)得=(λ,-1,).

解得
∵平面PMN與平面ABC所成的二面角為45°,
∴|cos<,>|=||==,
解得λ=-.(11分)
故點P在B1A1的延長線上,且|A1P|=.(12分)
點評:本題考查的知識點是向量評議表述線線的垂直、平等關系,用空間向量求直線與平面的夾角,用空間向量求平面間的夾角,其中熟練掌握向量夾角公式是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點.
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
A1P
A1B1

(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習冊答案