如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).

(1)求BN的長(zhǎng);

(2)求異面直線BA1與CB1的夾角的余弦值;

(3)求證:A1B⊥C1M.

答案:
解析:

  (1)解:∵CA=CB=1,∠BCA=90°,

  

  (2)解:如圖所示,作AD∥BC,BD∥AC,A1D1∥B1C1,B1D1∥A1C1,E、F分別是AC、B1D1的中點(diǎn),

  連結(jié)DD1,EF,A1F,A1E,EB,BF,A1B與EF交于O點(diǎn),

  則EF∥CB1,A1F∥EB,A1E∥BF,

  ∴四邊形A1EBF為平行四邊形.

  ∴OB與OE的夾角等于異面直線BA1與CB1的夾角.

  

  (3)證明:∵CA=CB=1,A1M=B1M,

  ∴C1M⊥A1B1

  又AA1⊥平面A1B1C1,

  ∴AA1⊥C1M.

  ∴C1M⊥平面ABB1A1

  又∵A1B平面ABB1A1

  ∴A1B⊥C1M.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對(duì)角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
(Ⅰ)求線段MN的長(zhǎng);
(Ⅱ)求證:MN∥平面ABB1A1
(Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大。
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊(cè)答案