(2013•鎮(zhèn)江二模)如圖所示,有兩條道路OM與ON,∠MON=60°,現(xiàn)要鋪設(shè)三條下水管道OA,OB,AB(其中A,B分別在OM,ON上),若下水管道的總長度為3km,設(shè)OA=a(km),OB=b(km).
(1)求b關(guān)于a的函數(shù)表達(dá)式,并指出a的取值范圍;
(2)已知點(diǎn)P處有一個(gè)污水總管的接口,點(diǎn)P到OM的距離PH為
3
4
km
,到點(diǎn)O的距離PO為
7
4
km
,問下水管道AB能否經(jīng)過污水總管的接口點(diǎn)P?若能,求出a的值,若不能,請(qǐng)說明理由.
分析:(1)把AB的長度用含有a,b的代數(shù)式表示,在三角形AOB中利用余弦定理得到b和a的關(guān)系,即得到b關(guān)于a的函數(shù)表達(dá)式,利用三角形兩邊之和大于第三邊得到a的取值范圍;
(2)利用解析法,以O(shè)為原點(diǎn),OM所在直線為x軸,建立直角坐標(biāo)系,求出P點(diǎn)的坐標(biāo),假設(shè)AB過點(diǎn)P,設(shè)出A,B的坐標(biāo),寫出A,B所在直線方程,把P點(diǎn)坐標(biāo)代入直線方程求出a的值,在定義域當(dāng)中,則假設(shè)成立,否則,不成立.
解答:解:(1)∵OA+OB+AB=3,∴AB=3-a-b.
∵∠MON=60°,由余弦定理,得AB2=a2+b2-2abcos60°.
∴(3-a-b)2=a2+b2+ab.
整理,得b=
2a-3
a-2

由a>0,b>0,3-a-b>0,及
a+b>3-a-b,a+3-a-b>b,b+3-a-b>a,得0<a<
3
2

綜上,b=
2a-3
a-2
,0<a<
3
2

(2)以O(shè)為原點(diǎn),OM所在直線為x軸,建立如圖所示直角坐標(biāo)系.

PH=
3
4
,PO=
7
4
,∴點(diǎn)P(
1
2
3
4
).
假設(shè)AB過點(diǎn)P.
∵A(a,0),B(
1
2
b,
3
2
b)
,即B(
1
2
2a-3
a-2
,
3
2
2a-3
a-2
)
,
∴直線AP方程為y=
3
4
1
2
-a
(x-a)
,即y=
3
2-4a
(x-a)

將點(diǎn)B代入,得
3
2
2a-3
a-2
=
3
2-4a
(
1
2
2a-3
a-2
-a)

化簡,得6a2-10a+3=0.
a=
7
6

a=
7
6
∈(0,
3
2
)

答:下水管道AB能經(jīng)過污水總管的接口點(diǎn)P,a=
7
6
(km).
點(diǎn)評(píng):本題考查了根據(jù)實(shí)際問題選擇函數(shù)模型,考查了余弦定理在解三角形中的應(yīng)用,注意實(shí)際問題要有實(shí)際意義,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)已知a為正的常數(shù),函數(shù)f(x)=|ax-x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)g(x)=
f(x)x
,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)如圖,設(shè)A,B分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn),過原點(diǎn)O作直線交線段AB于點(diǎn)M(異于點(diǎn)A,B),交橢圓于C,D兩點(diǎn)(點(diǎn)C在第一象限內(nèi)),△ABC和△ABD的面積分別為S1與S2
(1)若M是線段AB的中點(diǎn),直線OM的方程為y=
1
3
x
,求橢圓的離心率;
(2)當(dāng)點(diǎn)M在線段AB上運(yùn)動(dòng)時(shí),求
S1
S2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)已知數(shù)列{bn}滿足b1=
1
2
1
bn
+bn-1=2(n≥2,n∈N*)

(1)求b2,b3,猜想數(shù)列{bn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)x=
b
n
n
,y=
b
n+1
n
,比較xx與yy的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)已知i是虛數(shù)單位,復(fù)數(shù)z=
3+i1+i
對(duì)應(yīng)的點(diǎn)在第
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)設(shè)全集U=R,集合A={x|-1≤x≤3},B={x|x>1},則A∩?UB
{x|-1≤x≤1}
{x|-1≤x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案