已知雙曲線C:的漸近線方程為,O為坐標(biāo)原點(diǎn),點(diǎn)在雙曲線上.
(1)求雙曲線C的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且,求|OP|2+|OQ|2的最小值.

【答案】分析:(1)由漸近線方程可得關(guān)于a、b的一個(gè)方程,再把點(diǎn)代入雙曲線的方程又得到關(guān)于a、b的一個(gè)方程,將以上方程聯(lián)立即可解得a、b的值;
(2)利用?、一元二次方程的根與系數(shù)的關(guān)系、弦長公式即可求出.
解答:解:(1)雙曲線C的漸近線方程為,
∴b2=3a2,
∵點(diǎn)在雙曲線上,∴,
聯(lián)立得,解得,
∴雙曲線C的方程為
(2)設(shè)直線PQ的方程為y=kx+m,點(diǎn)P(x1,y1),Q(x2,y2),
將直線PQ的方程代入雙曲線C的方程,可化為(3-k2)x2-2kmx-m2-12=0
(*)

,
把y1=kx1+m,y2=kx2+m代入上式可得,
,
化簡得m2=6k2+6.
,
當(dāng)k=0時(shí),成立,且滿足(*)
又∵當(dāng)直線PQ垂直x軸時(shí),|PQ|2>24,
∴|OP|2+|OQ|2的最小值是24.
點(diǎn)評:熟練掌握待定系數(shù)法求圓錐曲線的方程、?、一元二次方程的根與系數(shù)的關(guān)系、弦長公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 

 

已知雙曲線9y2一m2x2=1(m>o)的一個(gè)頂點(diǎn)到它的一條漸近  線的距離為,則m=

      A.1                         B.2

      C.3                         D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線y2=4x的準(zhǔn)線過雙曲線=1(a>0,b>0)的左頂點(diǎn),且此雙曲線的一條漸

近線方程為y=2x,則雙曲線的焦距等于 (  ).

A.             B.2             C.             D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市高考真題 題型:解答題

已知以原點(diǎn)D為中心,F(xiàn)(,0)為右焦點(diǎn)的雙曲線C的離心率,。
(1)求雙曲線C的標(biāo)準(zhǔn)方程及其漸近線方程;
(2)如圖,已知過點(diǎn)M(x1,y1)的直線l1:x1x+4y1y=4與過點(diǎn)N(x2,y2)(其中x2≠x1)的直線l2:x2x+4y2y=4的交點(diǎn)E在雙曲線C上,直線MN與兩條漸近 線分別交于G、H兩點(diǎn),求△OGH的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的左、右焦點(diǎn)分別為F1、F2,其一條漸近方程為y=x,點(diǎn) 在該雙上,則

(A)-12          (B)-2          (C)0           (D)4

查看答案和解析>>

同步練習(xí)冊答案