已知函數(shù)f(x)=3x且f-1(18)=a+2,g(x)=3ax-4x定義域為[-1,1].
(1)求g(x)的解析式;
(2)判斷g(x)的單調(diào)性;
(3)若g(x)=m有解,求m的取值范圍.
分析:(1)先由函數(shù)f(x)=3x且f-1(18)=a+2解出3a的值,整體代入g(x)=3ax-4x中得到g(x)=2x-4x,
(2)對g(x)=2x-4x求導(dǎo),用導(dǎo)數(shù)判斷函數(shù)在[-1,1]上的單調(diào)性;
(3)令m屬于g(x)的值域,可保證g(x)=m有解,故求m的范圍的過程可轉(zhuǎn)化為求g(x)的值域.
解答:解:(1)由函數(shù)f(x)=3
x且f
-1(18)=a+2可得3
a+2=18,故9×3
a=18,得3
a=2
又g(x)=3
ax-4x=(3
a)
x-4x=2
x-4x
故g(x)=2
x-4x,x∈[-1,1].
(2)∵g'(x)=ln2×2
x-4是一增函數(shù),
又x∈[-1,1],故可得g'(1)=ln2×2-4<0
∴g(x)=2
x-4x,在[-1,1]上是減函數(shù).
(3)由(2)知函數(shù)在[-1,1]上是減函數(shù).
故-2≤g(x)≤
∵g(x)=m有解,
故m的取值范圍是[-2,
]
點評:本題的考點是指數(shù)函數(shù)單調(diào)性的應(yīng)用,考查運用指數(shù)函數(shù)的單調(diào)性求值域,本題把求m的范圍的問題可轉(zhuǎn)化為求g(x)的值域,在求解數(shù)學(xué)問題時,合理的正確的轉(zhuǎn)化是求解成功的關(guān)鍵.