(本題滿分14分)
已知函數(shù)
(Ⅰ)求的最大值及取得最大值時的集合;
(Ⅱ)設(shè)的角的對邊分別為,且.求的取值范圍.

解:(Ⅰ)  -----2分
                   ----------------------------4分
的最大值為                        -----------------------5分
當(dāng),下略)時取最大值,
的集合為                --------------------7分
(Ⅱ)由.
,故                  ------------------------9分
的取值范圍解法一:
由正弦定理,      --------10分

=                      ----------------------------12分
 
的取值范圍為                   --------------14分
的取值范圍解法二:
余弦定理          ---------------------10分
                                             
                     ------------------------13分
又,,即的取值范圍為       -----------14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對于恒成立,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標(biāo)原點且斜率為的直線相交于、,

⑴求的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案