【題目】已知函數(shù).

(1)當(dāng)時,若直線是函數(shù)的圖象的切線,求的最小值;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負(fù).

【答案】(1);(2)當(dāng)時,上存在極值,且極值都為正數(shù).

【解析】

(1) 設(shè)切點坐標(biāo)為,求得切線的方程,由直線是函數(shù)的圖象的切線,得到,,求得,利用導(dǎo)數(shù)即可求得的最小值.

(2)求出的導(dǎo)數(shù),,上存在極值,則,分類討論,分別構(gòu)造新函數(shù),根據(jù)導(dǎo)數(shù)與函數(shù)的關(guān)系,即可求得的取值范圍.

1)設(shè)切點坐標(biāo)為,

,

切線斜率,又

,

,

,

,解,上遞減,在上遞增.

,的最小值為.

(2).

.

設(shè),則.

,得.

當(dāng)時,,當(dāng)時,.

上單調(diào)遞增,在上單調(diào)遞減.

,,.

顯然.

結(jié)合函數(shù)圖象可知,若上存在極值,

(。┊(dāng),即時,

則必定,使得,且.

當(dāng)變化時,,的變化情況如下表:

-

0

+

0

-

-

0

+

0

-

極小值

極大值

∴當(dāng)時,上的極值為,,且.

.

設(shè),其中,.

,上單調(diào)遞增,,當(dāng)且僅當(dāng)時取等號.

.

∴當(dāng)時,上的極值.

(ⅱ)當(dāng),即時,

則必定,使得.

易知上單調(diào)遞增,在上單調(diào)遞減.

此時,上的極大值是,且.

∴當(dāng)時,上的極值為正數(shù).

綜上所述:當(dāng)時,上存在極值,且極值都為正數(shù).

注:也可由,得.令后再研究上的極值問題.若只求的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的最大值;

(2)在(1)成立的條件下,正實數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=81,a3+a5=14

1)求數(shù)列{an}的通項公式;

2)設(shè)bn=,若{bn}的前n項和為Tn,證明:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得恒成立

D.對任意兩個正實數(shù),,且,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:

是偶函數(shù);的最大值為;

個零點;在區(qū)間單調(diào)遞增.

其中所有正確結(jié)論的編號是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點,lC交于A,B兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費次第

收費比率

該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進(jìn)行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:

消費次數(shù)

人數(shù)

假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,,AB=AD=2CD=2,△ADP為等邊三角形.

(1)當(dāng)PB長為多少時,平面平面ABCD?并說明理由;

(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案