設數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有an=5Sn+1成立,記bn=
4+an
1-an
(n∈N*),
(1)求數(shù)列{bn}的通項公式;
(2)記Cn=b2n-b2n-1(n∈N*),設數(shù)列{Cn}的前n和為Tn,求證:對任意正整數(shù)n,都有Tn
3
2
分析:(1)令n等于1代入an=5Sn+1中,即可求出首項a1,然后把n換為n+1,利用an=5Sn+1表示出
an
an-1
,它的值即為公比,得到此數(shù)列為等比數(shù)列,然后根據(jù)首項和公比寫出數(shù)列的通項公式即可,因而可得出bn的通項公式;
(2)根據(jù)bn的通項公式,計算出cn的通項公式,再比較Tn與
3
2
的大小;
解答:解:(1)∵5Sn=an-1
當n=1時,a1=5a1+1∴a1=-
1
4

當n≥2時,5an=5Sn-5Sn-1=an-1-(an-1-1)=an-an-1
an
an-1
=-
1
4

∴數(shù)列{an}成等比數(shù)列,其首項a1=-
1
4
,公比q=-
1
4

an=(-
1
4
)n
bn=
4+(-
1
4
)
n
1-(-
1
4
)
n
(n∈N*) (5分)
(2)由(1)知bn=4+
5
(-4)n-1

cn=b2n-b2n-1=
5
42n-1
+
5
42n-1+1
=
25×16n
(16n-1)(16n+4)
=
25×16n
(16n)2+3×16n-4
25×16n
(16n)2
=
25
16n

又 b1=3,b2=
13
3
c1=
4
3

當n=1時,T1
3
2

當n≥2時,Tn
4
3
+25×(
1
162
+
1
163
+…+
1
16n
)=
4
3
+25×
1
162
(1-
1
16n-1
)
1-
1
16

4
3
+25×
1
162
1-
1
16
=
69
48
3
2
(12分)
點評:此題考查學生靈活運用等比數(shù)列的通項公式及前n項和的公式化簡求出,會確定一個數(shù)列為等比數(shù)列,考查數(shù)列遞推式的求解及相關計算.是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案