{an}是等比數(shù)列,首項a1=1,前3項和S3=3,則公比q=( 。
分析:當q=1時,顯然滿足條件.當q≠1,由題意可得 S3=
1(1-q3)
1-q
=3,解得q 的值,綜合可得結(jié)論.
解答:解:當q=1時,顯然滿足條件.
當q≠1,由題意可得 S3=
1(1-q3)
1-q
=3,解得 q=-2,
綜上可得,公比q=1或-2,
故選C.
點評:本題主要考查等比數(shù)列的前n項和公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2n+1+λ-1,若{an}是等比數(shù)列,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=1,前n項之和Sn滿足關(guān)系式:3tSn+1-(2t+3)Sn=3t(t>0,n∈N*).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足bn+1=f(
1bn
),(n∈N*)
,且b1=1.
(i)求數(shù)列{bn}的通項bn;
(ii)設(shè)Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn.且滿足Sn=2an-1(n∈N+
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)數(shù)列{bn}滿足bn+1.=an+bnn∈N+.且b1=3.若不等式log2(bn-2)
316
n2+t
對任意n∈N+恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a4•a5•a6•a7•a8•a9•a10=128,則a15
a2a10
=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=logkx(k為常數(shù),k>0且k≠1),且數(shù)列{f(an)}是首項為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若bn=an•f(an),當k=
2
時,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案