圓心在軸上,且與直線切于(1,1)點的圓的方程為        。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

的圓心坐標為             ,和圓C關于直線對稱的圓C′的普通方程是                   .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80m.經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),.以所在直線為軸,以所在直線為軸建立平面直角坐標系.
(Ⅰ)求所在直線的方程及新橋BC的長;
(Ⅱ)當OM多長時,圓形保護區(qū)的面積最大?
并求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B、D交AB于另一點E,⊙O2經(jīng)過點C、D交AC于另一點F,⊙O1與⊙O2交于點G.

(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

點(-1,2)半徑為3的圓的參數(shù)方程為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(示范性高中做)已知圓C:,過點M (5,6)的直線l與圓C交于P、Q兩點,若,,則直線l的斜率為            ;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

過點A(4,1)的圓C與直線x-y=0相切于點B(2,1),則圓C的方程為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(幾何證明選講選做題)如圖5,AB為⊙O的直徑,弦AC、BD交于點P,若AB=3,CD=1,則=      。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

A,B,C是⊙O上三點,PC切⊙O于點C,,則的大小為          .

查看答案和解析>>

同步練習冊答案