如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,
(1)若為的中點,求證:平面;
(2)求平面與平面所成銳二面角的大。
(Ⅰ)連結,交與,連結,
中,分別為兩腰的中點 , 確定.
得到平面.
(Ⅱ),.
【解析】
試題分析:(Ⅰ)證明:連結,交與,連結,
中,分別為兩腰的中點 , ∴. 2分
因為面,又面,所以平面. 4分
(Ⅱ)解:設平面與所成銳二面角的大小為,以為空間坐標系的原點,分別以所在直線為軸建立空間直角坐標系,則
,.
設平面的單位法向量為則可設. 7分
設面的法向量,應有
即:
解得:,所以 . 10分
,. 12分
考點:本題主要考查立體幾何中的平行關系,角的計算。
點評:中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用空間向量簡化了證明過程。
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com