已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0.
(1)求b,c的值;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍.
【答案】
分析:(1)由函數(shù)f(x)=(x
2+bx+c)e
x在點P(0,f(0))處的切線方程為2x+y-1=0,可求得f(0)的值,求導,令f′(0)=-2,解方程組可求得b,c的值;(2)令導函數(shù)f′(x)=[0,求解,分析導函數(shù)的符號,可知函數(shù)的單調區(qū)間;(3)方程f(x)=m恰有兩個不等的實根,轉化為求函數(shù)的極值和單調性,從而可知函數(shù)圖象的變化情況,可求得m的取值范圍.
解答:解:(1)f′(x)=[x
2+(b+2)x+b+c]•e
x∵f(x)在點P(0,f(0))處的切線方程為2x+y-1=0.
∴
(2)由(1)知:f(x)=(x
2-3x+1)•e
x,f′(x)=(x
2-x-2)•e
x=(x-2)(x+1)•e
x∴f(x)的單調遞增區(qū)間是:(-∞,-1)和(2,+∞)f(x)的單調遞減區(qū)間是:(-1,2)
(3)由(2)知:
,f(x)
min=f(2)=-e
2但當x→+∞時,f(x)→+∞;又當x<0時,f(x)>0,
則當且僅當
時,方程f(x)=m恰有兩個不等的實根.
點評:考查函數(shù)導數(shù)的幾何意義和利用導數(shù)研究函數(shù)的極值和利用導數(shù)研究函數(shù)的單調性,以及方程根的個數(shù)問題,轉化為求函數(shù)的最值問題,體現(xiàn)了轉化的思想方法和數(shù)形結合的思想方法,屬中檔題.