已知函數(shù)f(x)=2sin(2x+
π3
),x∈R

(1)用五點(diǎn)作圖法作出的f(x)圖象;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.
分析:(1)用五點(diǎn)法作函數(shù)在一個(gè)周期上的簡圖.
(2)令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,求得x的范圍,即可求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
解答:解:(1)列表:
 2x+
π
3
 0  
π
2
 π  
2
 2π
 x -
π
6
 
π
12
 
π
3
 
12
 
6
 f(x)  0  2  0 -2  0
畫出函數(shù)的圖象:

(2)令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,可得 kπ+
π
12
≤2x+
π
3
≤kπ+
12
,k∈z.
故函數(shù)f(x)的單調(diào)遞減區(qū)間為[kπ+
π
12
,kπ+
12
],k∈z.
點(diǎn)評:本題主要考查用五點(diǎn)法作函數(shù)y=Asin(ωx+∅)在一個(gè)周期上的簡圖,求函數(shù)y=Asin(ωx+∅)的減區(qū)間,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案