已知F是雙曲線的左焦點,A為右頂點,上下虛軸端點B、C,若FB交CA于D,且,則此雙曲線的離心率為(   ).
A .          B.           C.             D.
B.

試題分析:如圖,由已知可得直線FB的方程為:,直線AC的方程為:,聯(lián)立前兩方程可得D點坐標為:,因此有,又,所以有,整理得,又,所以有:,故.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點,橢圓上一點M滿足∠MF1O=
π
3
,N為MF1的中點且ON⊥MF1,則橢圓的離心率為( 。
A.
3
-1
B.
3
2
C.2-
2
D.
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A為橢圓
x2
a2
+
y2
b1
=1(a>b>0)上的一個動點,弦AB、AC分別過焦點F1、F2,當AC垂直于x軸時,恰好有AF1:AF2=3:1.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設
AF1
1
F1B
AF2
2
F2C

①當A點恰為橢圓短軸的一個端點時,求λ12的值;
②當A點為該橢圓上的一個動點時,試判斷是λ12否為定值?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以拋物線的焦點為頂點,頂點為中心,離心率為2的雙曲線方程是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,已知中心在坐標原點的雙曲線經(jīng)過點,且它的右焦點與拋物線的焦點相同,則該雙曲線的標準方程為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線的左焦點作圓的兩條切線,切點分別為,雙曲線左頂點為,若,則該雙曲線的離心率為(    )
A.B.C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=4x的準線與雙曲線-y2=1交于A、B兩點,點F是拋物線的焦點,若△FAB為直角三角形,則該雙曲線的離心率為(  )
A.      B.         C.2      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點與雙曲線的右焦點重合,則p的值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案