17.設(shè)A為圓(x-2)2+(y-2)2=2上一動(dòng)點(diǎn),則A到直線x-y-4=0的最大距離為$3\sqrt{2}$.

分析 求出圓心和半徑.再求出圓心到直線的距離,把此距離加上半徑,即為所求.

解答 解:(x-2)2+(y-2)2=2的圓心坐標(biāo)為(2,2),半徑為$\sqrt{2}$,
(2,2)到直線的距離d=$\frac{|2-2-4|}{\sqrt{2}}$=2$\sqrt{2}$,
∴圓(x-2)2+(y-2)2=2上的點(diǎn)到直線x-y-4=0的最大距離是$3\sqrt{2}$;
故答案為$3\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式等知識(shí)的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知?jiǎng)訄AP與圓F1:(x+2)2+y2=(2$\sqrt{7}$+3)2 相內(nèi)切,且與圓F2:(x-2)2+y2=9相內(nèi)切,記圓心P的軌跡為曲線C;設(shè)M為曲線C上的一個(gè)不在x軸上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)F2作OM的平行線交曲線C于A,B兩個(gè)不同的點(diǎn).
(1)求曲線C的方程;
(2)是否存在常數(shù)λ,使得$\frac{|AB|}{|OM{|}^{2}}$=λ,若能,求出這個(gè)常數(shù)λ.若不能,說(shuō)明理由;
(3)記△MF2A面積為S1,△OF2B面積為S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三個(gè)不同的零點(diǎn),則b=-2或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx.
(1)若f(x)≤ax在x>0時(shí)恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:$\frac{x}{1+x}$≤f(x+1)在x>-1時(shí)恒成立;
(3)設(shè)n∈N*,證明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12..已知數(shù)列{an},{bn}滿足:an+bn=1,bn+1=$\frac{b_n}{{(1-{a_n})(1+{a_n})}}$,且a1,b1是函數(shù)f(x)=16x2-16x+3的零點(diǎn)(a1<b1).
(1)求a1,b1,b2
(2)設(shè)cn=$\frac{1}{{{b_n}-1}}$,求證:數(shù)列{cn}是等差數(shù)列,并求bn的通項(xiàng)公式;
(3)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.根據(jù)下列條件,求直線方程(結(jié)果寫成一般式)
(1)直線l過(guò)點(diǎn)(-1,2),且在x,y軸上的截距相等;
(2)直線m過(guò)點(diǎn)(2,1),并且到A(1,1)、B(3,5)兩點(diǎn)的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=2-|x|+c有零點(diǎn),則實(shí)數(shù)c的取值范圍是( 。
A.(0,1]B.[0,1]C.[-1,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\frac{A}{2}$-$\frac{A}{2}$cos2(ωx+φ),(A>0,ω>0,0<φ<$\frac{π}{2})$的圖象過(guò)點(diǎn)(1,2),相鄰兩條對(duì)稱軸間的距離為2,且f(x)的最大值為2.則f(1)+f(2)+…+f(2016)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)x∈R,若函數(shù)f(x)為單調(diào)遞增函數(shù),且對(duì)任意實(shí)數(shù)x,都有f[f(x)-ex]=e+1(e是自然對(duì)數(shù)的底數(shù)),則方程f(x)-x-2=0的解的個(gè)數(shù)為(  )個(gè).
A.1B.0C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案