如果雙曲線
x2
a2
-
y2
b2
=1
右支上總存在到雙曲線的中心與右焦點(diǎn)距離相等的兩個(gè)相異點(diǎn),則雙曲線離心率的取值范圍是(  )
A、(1,2]
B、(2,+∞)
C、(1,2)
D、[2,+∞)
分析:先設(shè)出雙曲線右支任意一點(diǎn)坐標(biāo),根據(jù)到右焦點(diǎn)的距離和到中心的距離相等,利用兩點(diǎn)間距離公式建立等式求得x,進(jìn)而利用x的范圍確定a和c的不等式關(guān)系,進(jìn)而求得e的范圍,同時(shí)根據(jù)雙曲線的離心率等于2時(shí),右支上只有一個(gè)點(diǎn)即頂點(diǎn)到中心和右焦點(diǎn)的距離相等,所以不能等于2,最后綜合求得答案.
解答:解:設(shè)雙曲線右支任意一點(diǎn)坐標(biāo)為(x,y)則x≥a,
∵到右焦點(diǎn)的距離和到中心的距離相等,由兩點(diǎn)間距離公式:x2+y2=(x-c)2+y2得x=
c
2
,
∵x≥a,∴
c
2
≥a,得e≥2,
又∵雙曲線的離心率等于2時(shí),右支上只有一個(gè)點(diǎn)即頂點(diǎn)到中心和右焦點(diǎn)的距離相等,所以不能等于2
故選B
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是求得a和c的不等式關(guān)系,考查了學(xué)生轉(zhuǎn)化和化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),一條漸近線為y=
1
2
x
,過(guò)點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的頂點(diǎn),并且被直線x=
a2
c
(c為雙曲線的半焦距)分為弧長(zhǎng)為3:1的兩段弧,則該雙曲線的離心等于…( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•楊浦區(qū)二模)(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請(qǐng)你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過(guò)原點(diǎn),P為概括后命題中曲線上一動(dòng)點(diǎn),借助直線L及動(dòng)點(diǎn)P,請(qǐng)你提出一個(gè)有意義的數(shù)學(xué)問(wèn)題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果雙曲線
x2
a2
-
y2
b2
=1
右支上總存在到雙曲線的中心與右焦點(diǎn)距離相等的兩個(gè)相異點(diǎn),則雙曲線離心率的取值范圍是(  )
A.(1,2]B.(2,+∞)C.(1,2)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案