{x},{x,y},{x,y}的含義是否相同.

 

答案:
解析:

{x}表示單元素集合;

{x,y}表示兩個(gè)元素集合;

{xy}表示含一點(diǎn)集合.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱(chēng)f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(x,2)-3x,過(guò)坐標(biāo)原點(diǎn)O作曲線C:y=f(x)的切線l,切點(diǎn)為P(n,t)(n>0),設(shè)曲線C與l及y軸圍成圖形的面積為S,求S的值.
(Ⅱ)令函數(shù)g(x)=F(x,2)+alnx,討論函數(shù)g(x)是否有極值,如果有,說(shuō)明是極大值還是極小值.
(Ⅲ)證明:當(dāng)x,y∈N*且x<y時(shí),F(xiàn)(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|(
1
2
)
x
≥2}
,B={y|y=lg(x2+1)},則(CUA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動(dòng)點(diǎn)P(x,y),
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過(guò)原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過(guò)點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)(x1,y2)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱(chēng)集合M是“垂直對(duì)點(diǎn)集”,給出下列六個(gè)集合:
①M(fèi)={(x,y)|y=-
1x
}
②M={(x,y)|y=x2-1}
③M={(x,y)|y=ex-2}
④M={(x,y)|y=cosx}
⑤={(x,y)|y=2+sinx}
⑥M={(x,y)|y=lnx},
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是
 
(寫(xiě)出所有是“垂直對(duì)點(diǎn)集”的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案