已知函數(shù)f(x)=x2-2ax+5,若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,則實數(shù)a的取值范圍是( )
A.[2,3]
B.[1,2]
C.[-1,3]
D.[2,+∞)
【答案】分析:先由函數(shù)的解析式求出其對稱軸及單調(diào)區(qū)間;然后根據(jù)f(x)在區(qū)間(-∞,2]上是減函數(shù),得出a的一個取值范圍;
再對任意的x1,x2∈[1,a+1],|f(x1)-f(x2)|max=|f(a)-f(1)|≤4,又可求出a的一個取值范圍;最后兩者取交集,則問題解決.
解答:解:函數(shù)f(x)=x2-2ax+5的對稱軸是x=a,則其單調(diào)減區(qū)間為(-∞,a],
因為f(x)在區(qū)間(-∞,2]上是減函數(shù),所以2≤a,即a≥2.
則|a-1|≥|(a+1)-a|=1,
因此任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,只需|f(a)-f(1)|≤4即可,
即|(a2-2a2+5)-(1-2a+5)|=|a2-2a+1|=(a-1)2≤4,亦即-2≤a-1≤2,
解得-1≤a≤3,又a≥2,
因此a∈[2,3].
故選A.
點評:本題主要考查二次函數(shù)的單調(diào)性,及跨對稱軸的區(qū)間上的值域問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案