【題目】如圖,矩形所在的平面垂直于平面,為的中點(diǎn),,,,.
(1)求異面直線與所成角的余弦值;
(2)求二面角的正弦值.
【答案】(1)(2)
【解析】
(1)建立空間直角坐標(biāo)系,根據(jù)即可求解異面直線所成角的余弦值;
(2)分別求出兩個(gè)半平面的法向量,利用法向量的夾角求得二面角的余弦值,再求出正弦值.
矩形所在的平面垂直于平面,為的中點(diǎn),在平面內(nèi)過(guò)作的垂線交于,根據(jù)面面垂直的性質(zhì)可得平面,
同理在平面內(nèi)過(guò)作的垂線交于,根據(jù)面面垂直的性質(zhì)可得平面,所以兩兩互相垂直,
如圖所示,建立空間直角坐標(biāo)系,
因?yàn)?/span>,所以,
易得,
(1)由上述點(diǎn)坐標(biāo)可知,,所以直線與所成角的余弦值;
(2)因?yàn)?/span>,設(shè)平面的法向量為,則
解得,取,可得,
設(shè)平面的法向量為,則
解得,取,可得,
設(shè)二面角的平面角為,則,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求與的交點(diǎn)的直角坐標(biāo);
(2)求上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同的兩點(diǎn)A,B.
(Ⅰ)若α=,求線段AB中點(diǎn)M的坐標(biāo);
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】追求人類(lèi)與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;
(ii)試問(wèn)該企業(yè)7月、8月、9月這三個(gè)月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過(guò)2.88萬(wàn)元?說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若函數(shù),當(dāng)時(shí), 的最大值為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為8正方形中,點(diǎn)為的中點(diǎn),是上一點(diǎn),且,若對(duì)于常數(shù),在正方形的邊上恰有個(gè)不同的點(diǎn),使得,則實(shí)數(shù)的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某學(xué)校高三年級(jí)共1000名男生中隨機(jī)抽取50人測(cè)量身高.據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于155cm到195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)求第六組、第七組的頻率,并估計(jì)高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(2)學(xué)校決定讓這五十人在運(yùn)動(dòng)會(huì)上組成一個(gè)高旗隊(duì),在這五十人中要選身高在180cm以上(含180cm)的三人作為隊(duì)長(zhǎng),記X為身高在的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M,N分別是橢圓C:()的左頂點(diǎn)和上頂點(diǎn),F為其右焦點(diǎn),,橢圓的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線與橢圓C相交于A,B兩點(diǎn),若直線OA,AB,OB的斜率成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)證明:,都有;
(2)若函數(shù)有且只有一個(gè)零點(diǎn),求的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com