精英家教網 > 高中數學 > 題目詳情
    如圖,已知三角形PAQ頂點P-3,0),點Ay軸上,點Qx軸正半軸上,。

(I)          當點Ay軸上移動時,求動點M的軌跡E的方程;

 

II)設直線與軌跡E交于B、C兩點,點D(1,0),若∠BDC為鈍角,求k的取值范圍。

 

答案:
解析:

答案:解:(I)設

    則

    又

    又

   

    由<1><2>

    (II)設

   

    ∵∠BDC為鈍角,

   

   

    由消去y得:

   

    則

   

    <4><5>代入<3>得:,此時

    ,∴k的范圍是

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.點A、D分別是RB、RC的中點,現將△RAD沿著邊AD折起到△PAD位置,使PA⊥AB,連接PB、PC.
(1)求證:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
6
,PA=4,俯視圖也為直角三角形,另一直角邊長為2
2

(Ⅰ)畫出側視圖并求側視圖的面積;
(Ⅱ)證明面PAC⊥面PAB;
(Ⅲ)求直線PC與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知三棱錐P-ABC的側面PAC是底角為45°的等腰三角形,PA=PC,且該側面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求證:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若該三棱錐被平行于底面的平面所截,得到一個幾何體ABC-A1B1C1,求幾何體ABC-A1B1C1的側面積.

查看答案和解析>>

同步練習冊答案