(2012•濟南三模)某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
分析:由三視圖可知這是一個圓柱,上面挖去一個小圓錐的幾何體,由圖中所提供的數(shù)據(jù)進行計算即可得到所求的表面積選出正確選項
解答:解:由三視圖可知這是一個圓柱,上面挖去一個小圓錐的幾何體,圓柱的底面積為π,圓柱的側面積為2π×2=4π,圓錐的母線長為
22+1
=
5
,側面積為
5
π
,所以總的側面積為
5
π+π+4π=(5+
5
,
故選A.
點評:本題考查簡單幾何體的三視圖,此類題的關鍵是能由實物圖得到正確的三視圖或者由三視圖可準確還原實物圖
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)經(jīng)市場調查,某旅游城市在過去的一個月內(以30天計),第t天(1≤t≤30,t∈N﹢)的旅游人數(shù)f(t) (萬人)近似地滿足f(t)=4+
1t
,而人均消費g(t)(元)近似地滿足g(t)=120-|t-20|.
(1)求該城市的旅游日收益w(t)(萬元)與時間t(1≤t≤30,t∈N)的函數(shù)關系式;
(2)求該城市旅游日收益的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)某旅游景點預計2013年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關系近似地滿足p(x)=
1
2
x(x+1)•(39-2x),(x∈N*,且x≤12).已知第x月的人均消費額q(x)(單位:元)與x的近似關系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(I)寫出2013年第x月的旅游人數(shù)f(x)(單位:人)與x的函數(shù)關系式;
(II)試問2013年第幾月旅游消費總額最大,最大月旅游消費總額為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且2PA=AD,E、F、G、H分別是線段PA、PD、CD、BC的中點.
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG;
(Ⅲ)求三棱錐E-AFG與四棱錐P-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)已知直線l:y=x+1,圓O:x2+y2=
3
2
,直線l被圓截得的弦長與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長相等,橢圓的離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點M(0,-
1
3
)的動直線l交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉動,以AB為直徑的圓恒過定點T?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)設函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)導函數(shù).
(I)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)當k為偶數(shù)時,數(shù)列{an}滿足a1=1,anf(an)
=a
2
n+1
-3
.證明:數(shù)列{
a
2
n
}中不存在成等差數(shù)列的三項;
(Ⅲ)當k為奇數(shù)時,設bn=
1
2
f
(n)-n
,數(shù)列{bn}的前n項和為Sn,證明不等式(1+bn)
1
bn+1
e對一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。

查看答案和解析>>

同步練習冊答案