【題目】已知函數(shù)f(x)=x2(ex+ex)﹣(2x+1)2(e2x+1+e2x1),則滿(mǎn)足f(x)>0的實(shí)數(shù)x的取值范圍為(
A.(﹣1,﹣
B.(﹣∞,﹣1)
C.(﹣ ,+∞)
D.(﹣∞,﹣1)∪(﹣ ,+∞)

【答案】A
【解析】解:設(shè)g(x)=x2(ex+ex),則由f(x)>0,得g(x)>g(2x+1),
∵g(﹣x)=g(x),∴g(x)為偶函數(shù),
當(dāng)x≥0時(shí),g′(x)=2x(ex+ex)+x2(ex﹣ex)≥0,
∴函數(shù)g(x)在[0,+∞)上為增函數(shù),
則由g(x)>g(2x+1),得|x|>|2x+1|,
解得:﹣1
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2 , 且橢圓E過(guò)點(diǎn)(0, ),( ,﹣ ),點(diǎn)A是橢圓上位于第一象限的一點(diǎn),且△AF1F2的面積S =
(1)求點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)B(3,0)的直線(xiàn)l與橢圓E相交于點(diǎn)P、Q,直線(xiàn)AP、AQ分別與x軸相交于點(diǎn)M、N,點(diǎn)C( ,0),證明:|CM||CN|為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面, , , 分別為, 的中點(diǎn).

1求證:平面平面

2求證:在棱上存在一點(diǎn),使得平面平面

3求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.

(1)求a,b的值;

(2)判斷并用定義證明f(x)在(+∞)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)是偶函數(shù)且在區(qū)間(0,+∞)上是增函數(shù)的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式ax2-(2a+3)x+6>0(aR).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查表明,市民對(duì)城市的居住滿(mǎn)意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價(jià)與收入的滿(mǎn)意度有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的滿(mǎn)意度指標(biāo)分別記為x、y、z,并對(duì)它們進(jìn)行量化:0表示不滿(mǎn)意,1表示基本滿(mǎn)意,2表示滿(mǎn)意,再用綜合指標(biāo)ω=x+y+z的值評(píng)定居民對(duì)城市的居住滿(mǎn)意度等級(jí):若ω≥4,則居住滿(mǎn)意度為一級(jí);若2≤ω≤3,則居住滿(mǎn)意度為二級(jí);若0≤ω≤1,則居住滿(mǎn)意度為三級(jí),為了解某城市居民對(duì)該城市的居住滿(mǎn)意度,研究人員從此城市居民中隨機(jī)抽取10人進(jìn)行調(diào)查,得到如下結(jié)果:

人員編號(hào)

1

2

3

4

5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,1,1)

(1,2,1)

人員編號(hào)

6

7

8

9

10

(x,y,z)

(1,2,2)

(1,1,1)

(1,2,2)

(1,0,0)

(1,1,1)


(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿(mǎn)意度指標(biāo)z相同的概率;
(2)從居住滿(mǎn)意度為一級(jí)的被調(diào)查者中隨機(jī)抽取一人,其綜合指標(biāo)為m,從居住滿(mǎn)意度不是一級(jí)的被調(diào)查者中任取一人,其綜合指標(biāo)為n,記隨機(jī)變量ξ=m﹣n,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,梯形ABCD中,AD∥BC,∠C= ,以AB為直徑的⊙O恰與CD相切于點(diǎn)E,⊙O交BC于F,連結(jié)EF.

(1)求證:AD+BC=AB;
(2)求證:EF是AD與AB的等比中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=bx﹣axlnx(a>0)的圖象在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)平y(tǒng)=(1﹣a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)設(shè)g(x)= ,若存在x1∈[e,e2],使g(x1)≤ 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案