已知橢圓G:過點(m,0),作圓x2+y2=1的切線l,交橢圓G于A,B兩點.

(Ⅰ)求橢圓G的焦點坐標和離心率;

(Ⅱ)將|AB|表示為m的函數(shù),并求|AB|的最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓G:
x24
+y2=1,過點(m,0)作圓x2+y2=1的切線l交橢圓G于A、B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)當m變化時,求S△OAB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點F(1,0).過點F作斜率為k(k≠0)的直線l,交橢圓G于A、B兩點,M(2,0)是一個定點.如圖所示,連AM、BM,分別交橢圓G于C、D兩點(不同于A、B),記直線CD的斜率為k1
(Ⅰ)求橢圓G的方程;
(Ⅱ)在直線l的斜率k變化的過程中,是否存在一個常數(shù)λ,使得k1=λk恒成立?若存在,求出這個常數(shù)λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G的中心在坐標原點,離心率為
5
3
,焦點F1、F2在x軸上,橢圓G上一點N到F1和F2的距離之和為6.
(1)求橢圓G的方程;
(2)若∠F1NF2=90°,求△NF1F2的面積;
(3)若過點M(-2,1)的直線l與橢圓交于A、B兩點,且A、B關(guān)于點M對稱,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•順義區(qū)一模)已知橢圓G:
x2
a2
+
y2
b2
=1  (a>b>0)
的離心率為
2
2
,⊙M過橢圓G的一個頂點和一個焦點,圓心M在此橢圓上,則滿足條件的點M的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案