已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在區(qū)間[-1,2]上求y=f(x)的值域.

解:(I)令f(x)=ax2+bx+c(a≠0)
代入f(x+1)-f(x)=2x,
得:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,
2ax+a+b=2x,
,
解得a=1,b=-1
又∵f(0)=c=1
∴f(x)=x2-x+1;
(II)∵函數(shù)f(x)=x2-x+1的圖象是開(kāi)口朝上,且以直線x=為對(duì)稱軸的拋物線
故函數(shù)f(x)在區(qū)間[-1,]上為減函數(shù),區(qū)間[,2]上為增函數(shù)
故當(dāng)x=-1,或x=2時(shí),函數(shù)f(x)取最大值3,
當(dāng)x=時(shí),函數(shù)f(x)取最小值
故y=f(x)的值域?yàn)閇,3]
分析:(I)設(shè)出二次函數(shù)的一般形式后,代入f(x+1)-f(x)=2x,化簡(jiǎn)后根據(jù)多項(xiàng)式相等,各系數(shù)相等即可求出a,b及c的值,即可確定出f(x)的解析式;
(II)由(1)中函數(shù)的解析式,分析函數(shù)在f(x)在區(qū)間[-1,2]上的單調(diào)性,進(jìn)而求出最值,得到y(tǒng)=f(x)的值域.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求法,及二次函數(shù)在閉區(qū)間上的最值,熟練掌握待定系數(shù)法求函數(shù)解析式的步驟及二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案