13.已知集合A={x|x2<16},B={x|x<m},若A∩B=A,則實數(shù)m的取值范圍是( 。
A.[-4,+∞)B.[4,+∞)C.(-∞,-4]D.(-∞,4]

分析 求出集合A中不等式的解集,確定出集合A,求出集合B中不等式的解集,確定出集合B,由A與B交集為集合A,得到A為B的子集,據(jù)此來求m的取值范圍.

解答 解:由集合A中的不等式x2<16,
解得:-4<x<4,
∴A=(-4,4),
∵A∩B=A,
∴A⊆B,
則m≥4,
綜上,實數(shù)m的取值范圍是[4,+∞).
故選:B.

點評 此題考查了交集及其運算,以及集合間的包含關(guān)系,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)中,在(0,+∞)上為增函數(shù)的是( 。
A.y=cosxB.y=xexC.y=x3-xD.y=lnx-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.由1,2,3三個數(shù)字組成數(shù)字允許重復的三位數(shù),則百位和十位上的數(shù)字均不小于個位數(shù)字的概率為( 。
A.$\frac{4}{27}$B.$\frac{1}{3}$C.$\frac{13}{27}$D.$\frac{14}{27}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知圓C方程為(x-1)2+y2=r2,若p:1≤r≤3;q:圓C上至多有3個點到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)點P對應的復數(shù)為-3-3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標可能為(  )
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.(x2-$\frac{2}{x}$)6展開式的常數(shù)項為240(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)為奇函數(shù),當x<0時,f(x)=ln(-x)+3x,則曲線y=f(x)在點(1,f(1))處的切線方程是y=2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax+b}{{1+{x^2}}}$的定義域為(-1,1),滿足f(-x)=-f(x),且f(${\frac{1}{2}}$)=$\frac{2}{5}$.
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)集合A={x|x2-2x-8<0},$B=\left\{{x\left|{{2^x}<\frac{1}{2}}\right.}\right\}$,則圖中陰影部分表示的集合為( 。
A.{x|-4<x<-1}B.{x|-1≤x<2}C.{x|-4<x≤-1}D.{x|-1≤x<4}

查看答案和解析>>

同步練習冊答案