精英家教網(wǎng)如圖所示,角A為鈍角,且sinA=
3
5
,點(diǎn)P、Q分別在角A的兩邊上.
(1)AP=5,PQ=3
5
,求AQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.
分析:(1)由A為鈍角,利用同角三角函數(shù)間的基本關(guān)系求出cosA的值,然后利用余弦定理得到關(guān)于AQ的方程,求出方程的解即可得到滿足題意的AQ的長(zhǎng);
(2)由cosα的值利用同角三角函數(shù)間的基本關(guān)系求出sinα的值,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式求出sinA的值及cosA的值,然后把2α+β變?yōu)棣?(α+β),利用兩角和的正弦函數(shù)公式化簡(jiǎn)后,分別將各自的值代入即可求出所求式子的值.
解答:解:(1)∵∠A是鈍角,sinA=
3
5
,∴cosA=-
4
5

在△APQ中,PQ2=AP2+AQ2-2AP•AQcosA,
45=25+AQ2-2×5AQ•(-
4
5
)
,
解得AQ=2或AQ=-10(舍)即AQ=2;
(2)由cosα=
12
13
,得sinα=
5
13
,
又sin(α+β)=sinA=
3
5
,cos(α+β)=-cosA=
4
5
,
∴sin(2α+β)=sin[α+(α+β)]=sinαcos(α+β)+cosαsin(α+β)=
5
13
4
5
+
12
13
3
5
=
56
65
點(diǎn)評(píng):此題要求學(xué)生靈活運(yùn)用余弦定理化簡(jiǎn)求值,掌握三角形的內(nèi)角和定理,靈活運(yùn)用兩角和的正弦函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)如圖所示,角A為鈍角,且cosA=-
4
5
,點(diǎn)P,Q分別在角A的兩邊上.
(1)已知AP=5,AQ=2,求PQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,角A為鈍角,且sinA=
3
5
,點(diǎn)P、分別在角A的兩邊上.
(1)已知AP=5,AQ=2,求PQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年山東省煙臺(tái)市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,角A為鈍角,且,點(diǎn)P、Q分別在角A的兩邊上.
(1)AP=5,PQ=,求AQ的長(zhǎng);
(2)設(shè)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省茂名市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖所示,角A為鈍角,且,點(diǎn)P、Q分別在角A的兩邊上.
(1)AP=5,PQ=,求AQ的長(zhǎng);
(2)設(shè)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案