如圖,圓與圓交于兩點(diǎn),以為切點(diǎn)作兩圓的切線分別交圓和圓兩點(diǎn),延長交圓于點(diǎn),延長交圓于點(diǎn).已知

(1)求的長;       
(2)求

(1);(2).

解析試題分析:本題主要考查弦切角定理、三角形相似、切割線定理等基礎(chǔ)知識,考查學(xué)生的邏輯推理能力、分析問題解決問題的能力.第一問,由于AC、AD分別是圓N、圓M的切線,所以利用弦切角定理,得到,,所以相似三角形的判定,得△∽△,所以可得到邊的比例關(guān)系,從而求出邊長;第二問,根據(jù)切割線定理,得到2組關(guān)系式,2個式子相除得到一個等式,再結(jié)合第一問的結(jié)論,解方程,得到的值.
試題解析:(1)根據(jù)弦切角定理,知,
∴△∽△ ,則
. 5分
(2)根據(jù)切割線定理,知,
兩式相除,得(*)
由△∽△,得,,
,由(*)得.                  10分
考點(diǎn):弦切角定理、三角形相似、切割線定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓的直徑,延長線上一點(diǎn),,割線交圓于點(diǎn),,過點(diǎn)的垂線,交直線于點(diǎn),交直線于點(diǎn).
(1)求證:;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,是的∠A的平分線,圓經(jīng)過點(diǎn)切于點(diǎn),與相交于,連結(jié),
(1)求證:;   (2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點(diǎn)E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時(shí),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC, DE交AB于點(diǎn)F.求證:△PDF∽△POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為圓O上一點(diǎn),AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B、E、F、C四點(diǎn)共圓.

(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如下圖所示,在梯形ABCD中,ADBC,BD、AC相交于O,過O的直線分別交AB、CDEF,且EFBC,若AD=12,BC=20,則EF=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,DE∥BC,EF∥CD.且AB=2,AD=,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案