一個等差數(shù)列前4項之和為26,最末4項之和為110,所有項之和為187,則它的項數(shù)為________.
11
∵a1+a2+a3+a4=26,an+an-1+an-2+an-3=110,∴a1+an=34.
又Sn=187,∴n=11
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

對于項數(shù)為的有窮數(shù)列數(shù)集,記,即、、、中的最大值,并稱數(shù)列的控制數(shù)列.如、、的控制數(shù)列是、、、、.
(1)若各項均為正整數(shù)的數(shù)列的控制數(shù)列為、、、,寫出所有的;
(2)設的控制數(shù)列,滿足為常數(shù),、、).求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an},其前n項和為Sn.
(1)若對任意的n∈N,a2n-1,a2n+1,a2n組成公差為4的等差數(shù)列,且a1=1,=2013,求n的值;
(2)若數(shù)列是公比為q(q≠-1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=1+.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和Sn=2n2+2n,數(shù)列{bn}的前n項和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設cn·bn,證明:當且僅當n≥3時,cn+1<cn..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}前n項和為Sn,且a2an=S2+Sn對一切正整數(shù)都成立.
(1)求a1,a2的值;
(2)設a1>0,數(shù)列前n項和為Tn,當n為何值時,Tn最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a7=15,a3+a8=8.
(1)求數(shù)列{an}的通項公式;
(2)令bn(n≥2),b1,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若an=n2+λn+3(其中λ為實常數(shù)),n∈N*,且數(shù)列{an}為單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知命題:若數(shù)列{an}為等差數(shù)列,且ama,anb(mnm、n∈N*),則amn;現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N*),bma,bnb(mnm、n∈N*),若類比上述結(jié)論,則可得到bmn=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等差數(shù)列{an}中,已知a3+a8=10,則3a5+a7=________.

查看答案和解析>>

同步練習冊答案