已知正項(xiàng)等比數(shù)列{an}滿足a2015=2a2013+a2014,若存在兩項(xiàng)am、an使得
則的最小值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖南省瀏陽(yáng)、醴陵、攸縣三校高三聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,三角形和梯形所在的平面互相垂直, ,,是線段上一點(diǎn),.
(Ⅰ)當(dāng)時(shí),求證:平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)是否存在點(diǎn)滿足平面?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題12分)過(guò)橢圓右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F(xiàn)1為其左焦點(diǎn),已知△AF1B的周長(zhǎng)為8,橢圓的離心率為.
(1)求橢圓C的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)P,Q,且⊥?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知命題,命題,則( )
A.命題是假命題
B.命題是真命題
C.命題是真命題
D.命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省江淮名校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知函數(shù)在區(qū)間[2,3]上有最大值4和最小值1,設(shè)
(1)求a、b的值;
(2)若不等式在上有解,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省江淮名校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)對(duì)定義域R內(nèi)的任意x都有,且當(dāng)x≠4時(shí)其導(dǎo)函數(shù)
滿足,若9<a<27,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省江淮名校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,則=( )
A.(0,2) B.[0,2] C.{0,2} D.{0,l,2}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省江淮名校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知等差數(shù)列{an}的前n項(xiàng)之和是Sn,則-am<a1<-am+l是Sm>0,Sm+1<0的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不毖要
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年山東省文登市高三上學(xué)期第一次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),,若有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)的取值范圍是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com