分析 (1)根據(jù)直線l的方程可得直線經(jīng)過定點(diǎn)H(1,1),而點(diǎn)H到圓心C(0,1)的距離為1,小于半徑,
故點(diǎn)H在圓的內(nèi)部,故直線l與圓C相交,命題得證.
(2)設(shè)A(x1,y1),B(x2,y2),由$|AP|=\frac{1}{2}|PB|$,得$1-{x_1}=\frac{1}{2}({x_2}-1)$,將直線與圓的方程聯(lián)立得:(1+m2)x2-2m2x+m2-5=0,利用韋達(dá)定理得出結(jié)論.
解答 (1)證明:由于直線l的方程是mx-y+1-m=0,即y-1=m(x-1),
直線恒過定點(diǎn)(1,1),且這個(gè)點(diǎn)在圓內(nèi),故直線L與圓C總有兩個(gè)不同的交點(diǎn).
(2)解:設(shè)A(x1,y1),B(x2,y2),由$|AP|=\frac{1}{2}|PB|$,得$1-{x_1}=\frac{1}{2}({x_2}-1)$,
即x2=3-2x1…①.
將直線與圓的方程聯(lián)立得:(1+m2)x2-2m2x+m2-5=0,
∴x1+x2=$\frac{2{m}^{2}}{1+{m}^{2}}$ …②,${x_1}{x_2}=\frac{{{m^2}-5}}{{1+{m^2}}}$…③
①②聯(lián)立可得x1=$\frac{3+{m}^{2}}{1+{m}^{2}}$,${x_2}=\frac{{{m^2}-3}}{{1+{m^2}}}$代入③得m=±1,
所以直線方程為x-y=0或x+y-2=0.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的判定,直線過定點(diǎn)問題,求直線方程,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①② | C. | ④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -4 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com