設(shè)f(x)在R上是偶函數(shù),若當(dāng)x>0時,有f(x)=log2(x+1),則f(-7)=________.

3
分析:先根據(jù)奇偶性可知f(-7)=f(7),然后將7代入大于0的解析式,解之即可求出所求.
解答:∵f(x)在R上是偶函數(shù)
∴f(-7)=f(7)
∵當(dāng)x>0時,有f(x)=log2(x+1),
∴f(7)=log2(7+1)=3,
∴f(-7)=f(7)=3
故答案為:3
點評:本題主要考查了函數(shù)的奇偶性,以及對數(shù)的運(yùn)算性質(zhì)和函數(shù)求值,同時考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
,g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b為非零實常數(shù).
(1)若f(x)=1-
3
,x∈[-
π
3
π
3
]
,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當(dāng)且僅當(dāng)x1=x2時,等號成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,b=
12
,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是R,對于任意實數(shù)m,n,恒有f(m+n)=f(m)+f(n),
(1)求證f(0)=0;
(2)判斷f(x)在R上的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,數(shù)學(xué)公式,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案