將一函數(shù)圖象按
a
=(1,2)平移后,所得函數(shù)圖象所對應(yīng)的函數(shù)解析式為y=lgx,則原圖象的對應(yīng)的函數(shù)解析式為
 
考點(diǎn):函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)向量
a
=(1,2)的方向,得到-
a
=(-1,-2),可將此平移分解為向左平移一個(gè)單位,再向下平移兩個(gè)單位,從而利用函數(shù)圖象變換的理論,得變換后函數(shù)解析式即可
解答: 解:∵
a
=(1,2),
∴-
a
=(-1,-2),
函數(shù)y=lgx的圖象按向量-
a
=(-1,-2)移動(dòng),
即函數(shù)y=lgx的圖象先向左平移一個(gè)單位,再向下平移兩個(gè)單位,
∴y=lg(x+1)-2.
故答案為:y=lg(x+1)-2.
點(diǎn)評:本題考察了函數(shù)圖象的平移變換,向量平移與圖象平移變換的關(guān)系,掌握平移方向和平移量是解決本題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(1,-3),
b
=(-2,4),
c
=(0,5),則3
a
-
b
+
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)的定義域?yàn)镽,當(dāng)x∈[0,+∞)時(shí)f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)系是(  )
A、f(π)<f(-2)<f(-3)
B、f(π)<f(-3)<f(-2)
C、f(π)>f(-2)>f(-3)
D、f(π)>f(-3)>f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,-1),
b
=(2,1+sinα),且
a
b
=-1.
(1)求tanα的值;
(2)求
2sinα-3cosα
4sinα-9cosα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x>1,log2x>0”的否定形式是( 。
A、?x0>1,log2x≤0
B、?x0≤1,log2x≤0
C、?x>1,log2x≤0
D、?x≤1,log2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使
x2-2x
有意義,x的取值應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)定義域?yàn)閇1,2],y=f(2x+
1
4
)+f(2x-
1
4
)的定義域?yàn)?div id="9jd7h9z" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O為三棱錐P-ABC的底面ABC的外接圓,AC是圓O的直徑,PA⊥BC,點(diǎn)M是線段PA的中點(diǎn).
(1)求證:BC⊥PB;
(2)設(shè)PA⊥AC,PA=AC=2,AB=1,求三棱錐P-MBC的體積;
(3)在△ABC內(nèi)是否存在點(diǎn)N,使得MN∥平面PBC?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A′B′C′中,AC=BC=5,AA′=AB=6,D、E分別為AB和BB′上的點(diǎn),且
AD
DB
=
BE
EB′
=λ.
(1)求證:當(dāng)λ=1時(shí),A′B⊥CE;
(2)當(dāng)λ為何值時(shí),三棱錐A′-CDE的體積最小,并求出最小體積.

查看答案和解析>>

同步練習(xí)冊答案