時命題也成立,現(xiàn)在已知當(dāng)n=5時,該命題不成立,那么可推算得( )
A.當(dāng)n=6時,該命題不成立 B.當(dāng)n=6時該命題成立
C.當(dāng)n=4時,該命題不成立 C.當(dāng)n=4時該命題成立
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.當(dāng)n=6時該命題不成立
B.當(dāng)n=6時該命題成立
C.當(dāng)n=4時該命題不成立
D.當(dāng)n=4時該命題成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.當(dāng)n=6時該命題不成立
B.當(dāng)n=6時該命題成立
C.當(dāng)n=4時該命題不成立
D.當(dāng)n=4時該命題成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.當(dāng)n=6時該命題不成立 B.當(dāng)n=6時該命題成立
C.當(dāng)n=4時該命題不成立 D.當(dāng)n=4時該命題成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當(dāng)n=k+1時該命題也成立,現(xiàn)已知n=5時,該命題不成立,那么可以推得( ).
A.n=6時該命題不成立 B.n=6時該命題成立
C.n=4時該命題不成立 D.n=4時該命題成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com