在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知
(Ⅰ)求sinC;
(Ⅱ)當c=2a,且時,求a.
【答案】分析:(Ⅰ)利用二倍角公式cos2C=1-2sin2C求解即可,注意隱含條件sinC>0;
(Ⅱ)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得sinA,cosA,cosC的值,又由sinB=sin(A+C)=sinAcosC+cosAsinC求出sinB的值,最后由正弦定理求出a的值.
解答:解:(Ⅰ)由已知可得.所以
因為在△ABC中,sinC>0,
所以.(6分)
(Ⅱ)因為c=2a,所以
因為△ABC是銳角三角形,所以,
所以sinB=sin(A+C)=sinAcosC+cosAsinC==
由正弦定理可得:,所以.(13分)
點評:此類問題是高考的?碱}型,主要考查了正弦定理、三角函數(shù)及三角恒等變換等知識點,同時考查了學生的基本運算能力和利用三角公式進行恒等變形的技能.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大。
(Ⅱ)當c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大。
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當c=2a,且b=3
7
時,求a及△ABC的面積.

查看答案和解析>>

同步練習冊答案