設函數(shù)f(x)=x2+aln(1+x)有兩個極值點,則實數(shù)a的取值范圍是
 
分析:題目中條件:“在R上有兩個極值點”,即導函數(shù)有兩個零點.從而轉化為二次函數(shù)f′(x)=0的實根的分布問題,利用二次函數(shù)的圖象令判別式大于0在-1處的函數(shù)值大于0即可.
解答:解:由題意,1+x>0
f′(x)=2x+
a
1+x
=
2x2+2x+a
1+x

∵f(x)=ax3+x恰有有兩個極值點,
∴方程f′(x)=0必有兩個不等根,
即2x2+2x+a=0在(-1,+∞)有兩個不等根
△=4-8a>0
2-2+a>0

解得0<a<
1
2

故答案為:0<a<
1
2
點評:本題主要考查函數(shù)的導數(shù)、極值等基礎知識,三次函數(shù)的單調性可借助于導函數(shù)(二次函數(shù))來分析.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案