解:(1)當(dāng)a>1時,a-1>0,f(x
1)-f(x
2)<0,函數(shù)f(x)為增函數(shù);
當(dāng)a<1時,a-1<0,f(x
1)-f(x
2)>0,函數(shù)f(x)為減函數(shù).
下面證明:
任取-1<x
1<x
2,則f(x
1)-f(x
2)=
=
=
,
∵-1<x
1<x
2,∴x
1+1>0,x
2+1>0,x
1-x
2<0
故當(dāng)a>1時,a-1>0,f(x
1)-f(x
2)<0,函數(shù)f(x)為增函數(shù);
當(dāng)a<1時,a-1<0,f(x
1)-f(x
2)>0,函數(shù)f(x)為減函數(shù).
(2)由(1)可知:當(dāng)a>1時,函數(shù)f(x)為增函數(shù);當(dāng)a<1時,函數(shù)f(x)為減函數(shù).
故當(dāng)a>1時,函數(shù)f(x)在[1,4]上的最小值為f(1)=
,最大值為f(4)=
;
當(dāng)a<1時,函數(shù)f(x)在[1,4]上的最大值為f(1)=
,最小值為f(4)=
.
分析:(1)任取-1<x
1<x
2,則f(x
1)-f(x
2)=
=
=
,由此式展開討論,可得結(jié)果;
(2)利用(1)的結(jié)論,結(jié)合最值的定義,易得答案.
點評:本題為函數(shù)的簡單應(yīng)用:(1)為定義法證明函數(shù)的單調(diào)性,(2)為利用(1)的結(jié)論來求最值,兩步均需注意分類討論.