選修4-4:坐標(biāo)系與參數(shù)方程選講.
在極坐標(biāo)系中, O為極點(diǎn), 半徑為2的圓C的圓心的極坐標(biāo)為.
(1) 求圓C的極坐標(biāo)方程;
(2) 在以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為
(t為參數(shù)),直線與圓C相交于A,B兩點(diǎn),已知定點(diǎn),求|MA|·|MB|。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷數(shù)學(xué)理科 題型:022
(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知射線=與曲線(t為參數(shù));相交于A,B兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)試題新課標(biāo)卷 題型:044
選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足=2,P點(diǎn)的軌跡為曲線C2
(Ⅰ)求C2的方程
(Ⅱ)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線=與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)試題新課標(biāo)卷 題型:044
選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足=2,P點(diǎn)的軌跡為曲線C2
(Ⅰ)求C2的方程
(Ⅱ)在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線=與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省蘇北四市2010屆高三第三次模擬考試 題型:解答題
A.選修4-1(幾何證明選講)
如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的交于點(diǎn),延長交于.(1)求證:是的中點(diǎn);(2)求線段的長.
B.選修4-2(矩陣與變換)
已知矩陣,若矩陣屬于特征值3的一個(gè)特征向量為,屬于特征值-1的一個(gè)特征向量為,求矩陣.
C.選修4-4(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線所截得的弦長.
D.選修4—5(不等式選講)
已知實(shí)數(shù)滿足,求的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧夏銀川一中2010屆高三第四次月考(理) 題型:解答題
(選修4-4:坐標(biāo)系與參數(shù)方程.)
已知直線經(jīng)過點(diǎn)P(1,1),傾斜角,
(1)寫出直線的參數(shù)方程
(2)設(shè)與圓x2+y2=4相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com