已知B(2,0),P是圓A:(x+2)2+y2=4上的動點(diǎn),PB的垂直平分線直線PA相交于點(diǎn)N,則N的軌跡方程是

[  ]
A.

B.

C.

(x>0)

D.

(x<0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個(gè)動點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是-
1
2

(Ⅰ)求動點(diǎn)P的軌跡C的方程,并求出曲線C的離心率的值;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)在平面直角坐標(biāo)系中,已知A1(-
2
,0),A2(
2
,0),P(x,y),M(x,1),N(x,-2)
,若實(shí)數(shù)λ使得λ2
OM
ON
=
A1P
A2P
(O為坐標(biāo)原點(diǎn)).
(Ⅰ) 求P點(diǎn)的軌跡方程,并討論P(yáng)點(diǎn)的軌跡類型;
(Ⅱ) 當(dāng)λ=
2
2
時(shí),是否存在過點(diǎn)B(0,2)的直線l與(Ⅰ)中P點(diǎn)的軌跡交于不同的兩點(diǎn)E,F(xiàn)(E在B,F(xiàn)之間),且[
S△OBE
S△EOF
>1
.若存在,求出該直線的斜率的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
為平面內(nèi)的兩個(gè)定點(diǎn),動點(diǎn)P滿足|PF1|+|PF2|=4,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)判斷原點(diǎn)O關(guān)于直線x+y-1=0的對稱點(diǎn)R是否在曲線Γ包圍的范圍內(nèi)?說明理由.
(注:點(diǎn)在曲線Γ包圍的范圍內(nèi)是指點(diǎn)在曲線Γ上或點(diǎn)在曲線Γ包圍的封閉圖形的內(nèi)部)
(Ⅲ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且
OA
+
OB
+
OC
=
0
.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省龍東南七校2009-2010學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)(文)試題 題型:013

已知B(2,0),P是圓A:(x+2)2+y2=4上的動點(diǎn),PB的垂直平分線直線PA相交于點(diǎn)N,則N的軌跡方程是

[  ]
A.

B.

C.

(x>0)

D.

(x<0)

查看答案和解析>>

同步練習(xí)冊答案